quotient polynomial - definição. O que é quotient polynomial. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é quotient polynomial - definição

EXPRESSION IN CALCULUS
Newton's quotient; Newton's difference quotient; Difference Quotient; Newton quotient; Fermat's difference quotient

HOMFLY polynomial         
TWO-VARIABLE KNOT POLYNOMIAL, GENERALIZING THE JONES AND ALEXANDER POLYNOMIALS
HOMFLY(PT) polynomial; HOMFLY; LYMPHTOFU polynomial; HOMFLYPT polynomial; Homfly polynomial; FLYPMOTH polynomial; HOMFLY invariant
In the mathematical field of knot theory, the HOMFLY polynomial or HOMFLYPT polynomial, sometimes called the generalized Jones polynomial, is a 2-variable knot polynomial, i.e.
Quotient space (linear algebra)         
VECTOR SPACE CONSISTING OF AFFINE SUBSETS
Linear quotient space; Quotient vector space
In linear algebra, the quotient of a vector space V by a subspace N is a vector space obtained by "collapsing" N to zero. The space obtained is called a quotient space and is denoted V/N (read "V mod N" or "V by N").
Polynomial transformation         
TRANSFORMATION OF A POLYNOMIAL INDUCED BY A TRANSFORMATION OF ITS ROOTS
Transforming Polynomials; Transforming polynomials; Polynomial transformations; Depressed polynomial
In mathematics, a polynomial transformation consists of computing the polynomial whose roots are a given function of the roots of a polynomial. Polynomial transformations such as Tschirnhaus transformations are often used to simplify the solution of algebraic equations.

Wikipédia

Difference quotient

In single-variable calculus, the difference quotient is usually the name for the expression

f ( x + h ) f ( x ) h {\displaystyle {\frac {f(x+h)-f(x)}{h}}}

which when taken to the limit as h approaches 0 gives the derivative of the function f. The name of the expression stems from the fact that it is the quotient of the difference of values of the function by the difference of the corresponding values of its argument (the latter is (x + h) - x = h in this case). The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h).: 237  The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change.

By a slight change in notation (and viewpoint), for an interval [a, b], the difference quotient

f ( b ) f ( a ) b a {\displaystyle {\frac {f(b)-f(a)}{b-a}}}

is called the mean (or average) value of the derivative of f over the interval [a, b]. This name is justified by the mean value theorem, which states that for a differentiable function f, its derivative f′ reaches its mean value at some point in the interval. Geometrically, this difference quotient measures the slope of the secant line passing through the points with coordinates (a, f(a)) and (b, f(b)).

Difference quotients are used as approximations in numerical differentiation, but they have also been subject of criticism in this application.

Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h.

The difference quotient is sometimes also called the Newton quotient (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat).